
Dynamic Low-Rank Module Allocation

Jesse Brouwers 1 Zsombor Fülöp 1 Miklós Hamar 1 Matey Krastev 1

Abstract
Efficient adaptation of large-scale Transformer
models has become a pressing issue in recent
years and gave rise to the field of Parameter-
Efficient Fine-Tuning (PEFT) methods. In this
work, we investigate the training dynamics of Low
Rank Adaptation (LoRA)-based approaches. We
propose an extension, DynaLoRA, which aims to
further reduce the memory demand of model adap-
tation, by only optimizing a subset of the trainable
parameters (selected based on their importance)
at any point in time during training. We explore
different resource allocation methods by propos-
ing different importance heuristics and allocation
schedules. Our results show, that we can further
reduce the effective number of trainable parame-
ters by 33%, without any significant performance
drop compared to LoRA.

1. Introduction
Foundation models have shown impressive abilities in a
wide range of tasks even within completely zero-shot set-
tings. Nevertheless, adapting them to downstream tasks
remains crucial for optimizing performance. However, per-
forming traditional full or partial fine-tuning has become
challenging as the models have substantially increased in
size, thereby imposing significant memory requirements.
For example, the LLaMA 65 billion parameter model (Tou-
vron et al., 2023) requires more than 780 GB of GPU
memory when adapting using traditional full fine-tuning
(Dettmers et al., 2024). As the current largest models are
on the scale of hundreds of billions or even trillions of pa-
rameters, full-finetuning has become infeasible for most
researchers and practitioners.

This challenge gave rise to parameter-efficient fine-tuning
(PEFT) methods, which attempt to adapt large-scale mod-
els by optimizing over a small fraction of their parame-
ters. Most remarkably, LoRA (Hu et al., 2021) optimizes
over the low-rank decomposition of the learned weight
matrices, while keeping the pre-trained model weights un-
changed. Through this method, LoRA achieves comparable
fine-tuning performance to full fine-tuning, while maintain-
ing the number of learnable parameters orders of magnitude

smaller than the total parameter count of the pre-trained
model.

Inspired by the success of LoRA, parameter-efficient fine-
tuning has become a rapidly evolving field, with numerous
extensions and improvements being proposed. These meth-
ods all attempt to further optimize the fine-tuning process,
by proposing novel ways of reducing the number of learn-
able parameters (Kopiczko et al., 2023), applying quantiza-
tion to the learned weights (Dettmers et al., 2024), proposing
different initialization methods for the learnable low-rank de-
composition matrices (Zhang et al., 2023), dynamically ad-
justing the rank of different modules during adaptation (Liu
et al., 2024), or optimizing the memory demand of the gra-
dient updates (Zhao et al., 2024). Even though all these
methods show remarkable performance, they mostly ad-
dress the question, how to reduce the number of trainable
parameters and disregard the question where should the
reduction happen.

In our work, we aim to address the latter question by propos-
ing different methods to dynamically allocate resources to
certain adapter modules, while saving computation on other
parameters, deemed less important for achieving some given
down-stream task. To this end, we propose DynaLoRA, a
novel adaptation strategy that dynamically allocates a fixed
computational resource budget at the module level. By eval-
uating module importance at various points during training,
we aim to approximate the loss-landscape and dynamically
allocate resources so that at any point in time, only the
most important modules are updated. We perform a thor-
ough evaluation of DynaLoRA’s capabilities and limitations,
hopefully providing valuable insights for future research in
the field.

Our main contributions can be summarised as follows:

1. We propose DynaLoRA, a novel parameter-efficient
fine-tuning extension to LoRA1 that dynamically al-
locates resources to the most important modules at
a given stage in training, further reducing the train-
ing requirements for fine-tuning large models while
maintaining comparable performance. DynaLoRA is
orthogonal to existing approaches for PEFT and pro-

1here we use LoRA to abbreviate LoRA and other LoRA-like
PEFT methods.

1

Dynamic Low-Rank Module Allocation

vides an effective way to reduce training requirements.

2. We evaluate the capabilities of DynaLoRA against
state-of-the-art PEFT methods by fine-tuning
RoBERTa-base on several GLUE benchmarks.

3. We provide extensive qualitative analysis of the mod-
ule selection procedure through ablation studies and
visualizations, aiming to enhance the understanding of
the inner workings of DynaLoRA.

2. Related Works
The Low-Rank Adaptation (LoRA) method (Hu et al., 2021)
represents a pivotal advancement in the fine-tuning pro-
cess of large pre-trained language models. By employing
a low-rank decomposition to learn updates for weight ma-
trices within dense layers, LoRA significantly reduces the
computational overhead associated with fine-tuning. This
approach not only achieves performance comparable to full
fine-tuning but also drastically lowers the hardware require-
ments by minimizing the number of parameters involved in
gradient calculations. Since its release, LoRA has become
the de-facto baseline for comparing different PEFT methods.
Our work also largely relies on its implementation in the
Huggingface PEFT library.

Building on this foundational work, Kopiczko et al. (2023)
developed VeRA, a modification to LoRA that further mini-
mizes the number of trainable parameters. VeRA introduces
trainable one-dimensional scaling vectors that adjust frozen
low-rank random projections. These projections are shared
across all modules and can be deterministically initialised
at any time. They demonstrate that effective training can be
achieved with even fewer parameters, maintaining perfor-
mance levels similar to LoRA. Simultaneously, Dettmers
et al. (2024) showed the LoRA methodology to be compati-
ble with quantized weights by introducing QLoRA, further
reducing memory requirements and lowering the hardware
barriers even more.

Another line of research has focused on enhancing effi-
ciency through smarter allocation of resources. AdaLoRA,
proposed by Zhang et al. (2023), uses a dynamic rank adjust-
ment strategy based on singular value decomposition (SVD).
This method incrementally prunes less critical components
of the learned SVD matrices until reaching a pre-set param-
eter budget, effectively reallocating resources to enhance
performance in critical modules. Conversely, SoRA (Ding
et al., 2023) enhances the dynamic capability of LoRA by
introducing a gating unit that controls rank sparsity, allow-
ing the removal of zero-valued ranks during inference to
optimize resource usage. ALoRA (Liu et al., 2024) proposes
dynamically adjusting the intrinsic rank of different modules
during adaptation, reallocating ranks from less necessary
modules and, in contrast with other methods, reallocates this

saved budget to modules requiring more representational
power. Collectively, these methods enhance representational
power by allowing for dynamic determination of representa-
tional needs per module, rather than fixing the rank before-
hand as in the original LoRA method. By flexibly allocating
higher ranks to more important modules and lower ranks
to less critical ones, they underscore the varying levels of
importance across different modules.

As opposed to methods which primarily focus on feature-
based rank pruning, Zhou et al. (2024) introduce LoRA-
Drop, which determines module importance based on the
norm of the forward activations. After initial training on
a subset of data, the method freezes the learned LoRA pa-
rameters to assess layer importance, enabling the pruning
of less critical layers. This strategy enhances parameter effi-
ciency and achieves performance that closely matches the
original LoRA method, illustrating an alternative approach
to rank-based pruning.

Previous studies highlight the adaptability of the LoRA
method and the potential for significant efficiency gains
through the effective allocation of computational resources.
However, no prior research has explored improving effi-
ciency by dynamically activating and deactivating LoRA
adapters in its entirety during training. Therefore we pro-
pose DynaLoRA, a novel adaptation strategy aimed to ad-
dress this gap.

3. Methodology
In the following section, we introduce some formal notation
for our method, as well as the key building blocks of Dy-
naLoRA. First, we will outline how module importance is
determined, after which we will discuss the different mod-
ule selection strategies. Subsequently, we will discuss the
scheduling strategies, and finally, we will define the two
different forms of optimization considered in this work.

Based on the notation of Hu et al. (2021), given some pre-
trained model M, composed of M modules, for each mod-
ule m ∈ M we characterize the inference on the fine-tuned
model simply as

h = (W
(m)
M +∆W (m))x,

where W
(m)
M ∈ R(d×d) is the pre-trained weight matrix,

∆W (m) ∈ R(d×d) is what is learned during fine-tuning, and
x, h ∈ Rd are the d dimensional input and output represen-
tations of the data we are performing inference over.

Depending on the PEFT method, ∆W (m) may take different
forms. In case of LoRA, ∆W (m) is a low-rank decompo-
sition ∆W (m) = BA, with B ∈ Rd×r and A ∈ Rr×d for
some r ≪ d denoting the rank of the decomposition. In
the case of VeRA, ∆W (m) = ΛbBΛdA, with Λb,Λd ∈ Rd

being scaling vectors. As we will show in the rest of this

2

https://huggingface.co/docs/peft/en/index

Dynamic Low-Rank Module Allocation

section, DynaLoRA is agnostic to how the ∆W (m) ma-
trices are expressed and instead focuses on their relative
importance during training.

3.1. Importance of Delta Layers

The main research question we aim to investigate is whether
it is possible to dynamically allocate resources to the most
important modules during training by refraining from gradi-
ent computation for less important ones. Throughout this
report, we refer to certain modules as ’active’ or ’inactive’,
i.e. ’receives gradient updates’ or not, respectively.

To that end, we investigate several potential indicators for
module importance during training, specifically the output
of linear layer application, and the backward gradients of
the given linear layer’s adapter weight matrices. These are
alternatively referred to in the text as forward activations
and backwards activations, respectively.

Formally, we define the activation score as a scalar value
computed from the output representation h, denoted as
||h|| = ||(W (m)

M + ∆W (m))x|| ∈ R. To build compara-
ble aggregate importance scores, we use an aggregation
function ν that takes in the output representation and com-
putes a scalar score. For example, we can use the L1 or L2
norms of the output vectors. During training, at each step t,
we compute the importance of each module m as

y
(m)
t =

∑
x∈Dt

||(W (m)
M +∆W (m))x||p (1)

where Dt denotes the set of training samples encountered
up to time t and p ∈ {1, 2}. We opt to use the L2 norm
throughout the rest of our study. We then normalize these
activations to obtain the importance of each module m as

ŷ
(m)
t =

y
(m)
t∑

k∈M y
(k)
t

∈ [0, 1]. (2)

In practice, to save computational resources, we can omit
this calculation and take y(m) as the importance of module
m. It is important to note that the above characterization
of importance is in line with Zhou et al. (2024), who use
the Frobenius norm of the forward activations up to some
t > 0 steps and then select the most important transformer-
blocks for further training and share a single adapter weight
matrix across the modules in all other transformer-blocks.
We extend upon this idea by allowing certain modules to
be activated and deactivated dynamically during training
and performing selection over individual modules instead
of transformer blocks. We hypothesize that, in the pro-
cess of training, certain modules may (1) converge and no
longer learn as effectively, making less frequently activated

adapters more beneficial targets for training; or (2) become
more important for achieving downstream tasks.

In the rest of this section, we describe how modules are
selected in this dynamic setting, and at which points during
training. Finally, we discuss possible optimization strategies
which ensure stable training and convergence.

3.2. Module Selection

To ensure that the most important modules are updated, we
select which modules to update during fine-tuning based
on the importance of each module ŷ

(m)
t . We explore four

different selection methods.

Top-K: Simply select the top-k modules with the highest
importance scores y(m)

t at certain points during training.

Threshold: Analogously to the work of Zhou et al. (2024),
in this method we define some threshold p ∈ [0, 1] and
select the first n ≥ 1 most important modules, such that∑

n y
(n)
t ≥ p.

Stochastic: As shown in Figure ??, there may be some
modules with smaller activations in the early steps of train-
ing that become more relevant as training progresses. Conse-
quently, the two methods described above do not guarantee
stable learning. To incentivise exploration, we select each
module m with probability ŷm.

Discounted Stochastic: Finally, during our experiments
we observed that, based on their role in the architecture of
the model, some modules tend to have much higher forward
activations than others. In the case of the RoBERTa model
(Liu et al., 2019), dense layers tend to have much higher
activations than the linear modules in the attention blocks.
As a result, these modules are more likely to be selected in
all of the above methods. To address this, we introduce a
counter for each module, C(m)

t , which is incremented each
time a module receives a gradient update. Then, we discount
the importance of each module by the number of times it
was selected for training by computing

ỹ
(m)
t =

ŷ
(m)
t

C(m)
(3)

and perform categorical sampling as before. This method
further incentivises the exploration of modules with smaller
activations and we expect it to yield more balanced training
dynamics.

3.3. Module Allocation Schedule

Finally, we discuss how often we should update our selec-
tion of modules. Intuitively, if we reallocate resources too

3

Dynamic Low-Rank Module Allocation

often, we may not be able to train the selected modules effec-
tively, as the model will not be able to learn new information
consistently. On the other hand, if we reallocate resources
too infrequently, we may miss out on the opportunity to
adapt to the changing importance of different modules. In
line with that, we explore the following scheduling strate-
gies:

1. Reallocate once schedule: We select the modules at
the beginning of training and once more after some
specified number of steps α. This method is most sim-
ilar to Zhou et al. (2024), who select the most impor-
tant transformer-blocks after some specified number of
training epochs.

2. Periodic schedule: We select the modules after ev-
ery n steps during training. This method allows for
more frequent reallocation of resources and may lead
to better performance in the long run.

3.4. Gradient optimization

The above-described methodology gives us a way to dynam-
ically select which modules to update during training. To
save computational resources, during stochastic optimiza-
tion, we disable the gradient updates for the modules that
are not selected. Here we note that this approach may lead
to instability in the gradient updates, especially in the case
of more advanced optimization algorithms such as Adam
(Kingma & Ba, 2014) or AdamW (Loshchilov & Hutter,
2018), which rely on the moving averages of the gradients.
Moreover, the learning rate schedules may also need to be
adjusted to account for the fact that some modules are not
updated during training. To address this, we propose the
following strategies:

1. Global optimization: We initialize a global optimizer
and learning rate scheduler and update only the cur-
rent selection of modules at each step. This method
disregards the fact that some modules are not updated
during training and may lead to instability in the gradi-
ent updates.

2. Local optimization: We initialize a separate optimizer
and learning rate scheduler for each module and update
only the selected modules at each step. We expect this
method to lead to a more stable training process, at a
slight additional memory overhead, due to having to
keep |M | separate optimizer states in memory.

In our experiments, we performed extensive hyper-
parameter search to find the most optimal settings for the
above methods and we provide the results in Section 5.

4. Experiments and Results
To evaluate the performance of our method, we conduct a
series of experiments on a selected subset of the General
Language Understanding Evaluation (GLUE) benchmark
(Wang et al., 2018), in line with previous work by Hu et al.
(2021), Kopiczko et al. (2023), and many others. Due to the
need for extensive hyperparameter search coupled with time
and computational constraints, we only experiment with
RoBERTa-base (Liu et al., 2019). However, to underline the
effectiveness of our approach, it would be necessary to fine-
tune larger models such as DeBERTa XXL (He et al., 2021)
and GPT-2 (Radford et al., 2019), since we hypothesise to
see more significant memory gains when DynaLoRA is used
on larger models.

4.1. Experimental Setup

As outlined in Section 3, we perform a variety of ablation
studies aimed at finding the most optimal settings for Dy-
naLoRA. Those vary across the following categories:

• PEFT method: A Parameter Efficient Fine-Tuning
method that serves as a backbone for the adaptation
process. In our experiments, we only consider LoRA
(Hu et al., 2021) and VeRA (Kopiczko et al., 2023), but
the method is agnostic to most PEFT methods.

• Importance Measure: An aggregate score for impor-
tance. In this paper, we only consider the L2 norms
of the forward activations and layer gradients, as intro-
duced in Section 3.1.

• Allocator: A function determining which modules
should be trained based on the selected measure of
importance, as introduced in Section 3.2.

• Scheduler: At which points during training we should
update the selection of modules, as described in Section
3.3.

• Optimizer: Global or local, as described in Section
3.4.

4.2. Hardware Requirements

In our experiments, we train and test all models on a single
HPC node with an NVIDIA A100 (40 GB) GPU. Addition-
ally, we provide checkpoints for our fine-tuned models and
experimental setup to ensure reproducibility.

4.3. Baseline Comparison

Comparison to baseline LoRA and VeRA as well as full-fine
tuning and BitFit (Zaken et al., 2021) is reported in Table 1.
We also implemented dynamic reallocation on VeRA which

4

Dynamic Low-Rank Module Allocation

Method # Active Trainable SST-2 MRPC CoLA QNLI RTE STS-B Average

FT* 125M 94.8 90.2 63.6 92.8 78.7 91.2 85.2
BitFit* 0.1M 93.7 92.7 62.0 91.8 81.5 90.8 85.4
VeRA* 0.04M 94.6±.1 89.5±.5 65.6±.8 91.8±.2 78.7±.7 90.7±.2 85.1
LoRA* 0.3M 95.1±.2 89.7±.7 63.4±1.2 93.3±.3 86.6±.7 91.5±.2 86.6
DynaLoRA /QV/16/F (R) 0.2M 93.6 88.0 62.8 92.0 72.9 90.4 84.6
DynaLoRA /QV/16/F 0.2M 93.6 88.0 61.3 92.5 74.4 90.2 83.4
DynaLoRA /QV/16/B 0.2M 94.1 86.8 0.0 92.0 79.1 90.5 73.8
DynaVeRA /QV/16/F 19.0K 94.8 87.3 65.1 92.4 76.5 90.6 84.5

Table 1: Results on the GLUE benchmark for the RoBERTa-base model. Results derived from the original papers of
the specific methods are indicated with asterisk. Each DynaLoRA and DynaVeRA variant were fine-tuned with periodic
scheduler and periodicity 50, discounted stochastic allocator targeting only query and key modules (based on the observations
of the original LoRA paper by Hu et al.) from the transformer blocks, precisely 16 of the total 24. ”F” means using forward
activations as importance measure, ”B” backward activation. We distinguish ”R” to mean random selection of modules
without importance measure consideration. All other hyperparameters used for DynaLoRA and DynaVeRA are the same as
the ones reported in the original papers (Hu et al., 2021; Kopiczko et al., 2023).

we named DynaVeRA. DynaLoRA and DynaVeRA are al-
most as performant as their baseline counterparts despite
actively training 67% of the parameters at any time step.
Initially, DynaLoRA and DynaVeRA are initialized with the
same number of trainable parameters as their underlying
adapter method (LoRA or VeRA). However, they do not
train all of them during fine-tuning at each given step. A
fixed number of modules (here 16) are activated, the rest
are frozen, dynamically changing which are activated at cer-
tain steps. This way, not all gradient are calculated which
ultimately leads to less memory requirement.

Despite of our initial theoretical discussion on importance
scores calculated from forward and backward activations,
we observed that random selection of modules is equally
performant. In Section 5.1 we provide a more thorough
analysis of the different allocation strategies. Interestingly,
when fine-tuning on CoLA with DynaLoRA with backward
importance scores, the model gradually becomes worse and
worse, eventually reaching Matthews correlation score of
0. We rerun the experiment several times and consistently
observed the same behaviour. Understanding why this hap-
pens requires more in-depth analysis of the dataset which
we leave for future work.

4.4. Training Dynamics

We study how computational aspects of training are affected
by DynaLoRA’s inclusion. More specifically, we look at
validation set loss (Figure 1) and peak memory consumption
(Figure 2).

We note that the evaluation loss grows with each LoRA
variant while the evaluation metrics also grow. We are
unsure about the underlying reasons but note that with both

DynaLoRA variants, i.e. using either forward activations
or backward gradients as importance scores, the evaluation
loss grows less intensely than with normal LoRA training.
We hypothesize that the model is overfitting on the dataset,
as CoLA contains relatively few samples, and periodically
deactivating some modules acts as a way of regularization.

Furthermore, through DynaLoRA, the number of active
adapter modules at any given time step is decreased, thus
achieving non-negligible improvements in memory con-
sumption. As seen in Figure 2, DynaLoRA is able to con-
serve memory at minimal drop in model performance. We
expect this trend to be even more apparent when DynaLoRA
is applied on larger models, leading to significant reduction
in memory demands during fine-tuning.

Figure 1: Model loss estimated on validation set (Task:
CoLA, target modules: query and value).

5

Dynamic Low-Rank Module Allocation

Figure 2: Peak Memory compared to Performance on
CoLA task for varying number of active modules at once in
RoBERTa-base. Bars indicate memory usage, while the line
plot indicates downstream performance.

5. Ablation Study
In this section, we provide the results of the ablation studies
performed. First, the results of the experiments regarding
the allocation strategy are covered. Subsequently, the ex-
periments that explore the scheduling policy are outlined.
Finally, experimental results on the target modules included
for selection are provided, along with a qualitative analysis
of the model’s module allocation behavior.

5.1. Allocation Strategy

We focus on different strategies for selecting the most ap-
propriate modules to keep active in training throughout a
given period. We present our results in Figure 3.

We discover that, across the selected variety of tasks, ran-
dom allocation achieves very similar results to the dis-
counted stochastic allocator with importance score calcu-
lated from forward or backward activations. We hypothesize
that this may be attributed to the number of active modules
being large enough to improve on the task regardless of the
importance scores in the allocation strategy. To understand
better the significance of different importance scores, we ran
experiments using very low number (1-8) of active modules.
See Figure 3

Our initial results on the CoLA task indicate that the impor-
tance scores calculated from gradient norms may be a strong
indicator for module importance. However, our additional
testing across other tasks does not support this – instead, we
observe a very high variance in the target accuracy metrics.

5.2. Scheduling Policy

Briefly, we examine the various effects of allocation sched-
ules and their impact on the performance of the model. The

results are presented in Figure 4. We note a significant
trend where too frequent re-allocation periods can nega-
tively affect the model’s training. We hypothesize the high
frequency of updates inhibits model training by preventing
it from meaningfully learning new information and updating
its representations.

Beyond that, we find that there is a significant variance in
the results and the effect of periodicity does not seem to
manifest any apparent trends with regards to model perfor-
mance.

5.3. Target Module Selection

To further examine the viability of dynamic LoRA adapter
application, we fine-tune with LoRA on all linear layers,
i.e. both the query, key, and value modules from the trans-
former blocks, as well as the MLP linear layers following
the transformer blocks. We present our findings in Figure 5.

The results indicate high preference for DynaLoRA adapters
at MLP linear layers of the neural network. We suspect
that this trend may be attributed to the magnitude of these
specific layers’ forward activations in comparison to the
transformer block’s QKV modules. As the query and key
matrix are always multiplied together, they need to have
sufficiently low outputs in order to avoid exploding gradients
or large parameter magnitude.

6. Conclusion and Limitations
We introduce DynaLoRA, an effective PEFT training
method further reducing the costs of training adapter mod-
ules that is agnostic to the adapter method used. We perform
a variety of ablation studies to determine the most effective
parameter settings for training with DynaLoRA, including
computed aggregate importance scores, adapter dispatching
strategies, and scheduling policies.

We look forward to further experimentation with larger mod-
els, as well as on a wider variety of benchmarks and down-
stream tasks. We also welcome any reproductions and feasi-
bility studies.

Further investigation will be needed for establishing the
effectiveness of DynaLoRA and its variants within other
applications, namely in computer vision, diffusion-based
image and video generation, and so on.

References
Dettmers, T., Pagnoni, A., Holtzman, A., and Zettlemoyer, L.

Qlora: Efficient finetuning of quantized llms. Advances
in Neural Information Processing Systems, 36, 2024.

Ding, N., Lv, X., Wang, Q., Chen, Y., Zhou, B., Liu, Z., and
Sun, M. Sparse low-rank adaptation of pre-trained lan-

6

Dynamic Low-Rank Module Allocation

Figure 3: Three different scores for allocation strategies using very low number of active modules across selected GLUE-
tasks. Random allocation (blue), discounted stochastic with importance scores from forward activations (orange), discounted
stochastic with importance scores from backward activations (green). Each model was fine-tuned with periodic schedule type
with periodicity of 200 steps. The modules targeted for fine-tuning were query and value modules within the transformer
blocks.

Figure 4: Effect of the periodicity of active module re-
allocation. We fix the allocation strategy and only vary the
period of updates.

Figure 5: Heatmap of the total number of active steps a
module has been active through. We only consider matrix
norms of output of the forward application of the layer and
allow for activation of all linear layers (including the MLP
between Transformer blocks, diverging slightly from Hu
et al. (2021) who only consider the query, key and value
matrices).

7

Dynamic Low-Rank Module Allocation

guage models. arXiv preprint arXiv:2311.11696, 2023.

He, P., Liu, X., Gao, J., and Chen, W. Deberta: Decoding-
enhanced bert with disentangled attention. In In-
ternational Conference on Learning Representations,
2021. URL https://openreview.net/forum?
id=XPZIaotutsD.

Hu, E. J., Shen, Y., Wallis, P., Allen-Zhu, Z., Li, Y., Wang,
S., Wang, L., and Chen, W. Lora: Low-rank adaptation of
large language models. arXiv preprint arXiv:2106.09685,
2021.

Kingma, D. P. and Ba, J. Adam: A method for stochastic
optimization. arXiv preprint arXiv:1412.6980, 2014.

Kopiczko, D. J., Blankevoort, T., and Asano, Y. M. Vera:
Vector-based random matrix adaptation. arXiv preprint
arXiv:2310.11454, 2023.

Langley, P. Crafting papers on machine learning. In Langley,
P. (ed.), Proceedings of the 17th International Conference
on Machine Learning (ICML 2000), pp. 1207–1216, Stan-
ford, CA, 2000. Morgan Kaufmann.

Liu, Y., Ott, M., Goyal, N., Du, J., Joshi, M., Chen, D.,
Levy, O., Lewis, M., Zettlemoyer, L., and Stoyanov, V.
Roberta: A robustly optimized bert pretraining approach.
arXiv preprint arXiv:1907.11692, 2019.

Liu, Z., Lyn, J., Zhu, W., Tian, X., and Graham, Y. Alora:
Allocating low-rank adaptation for fine-tuning large lan-
guage models. arXiv preprint arXiv:2403.16187, 2024.

Loshchilov, I. and Hutter, F. Fixing weight decay regular-
ization in adam. 2018.

Radford, A., Wu, J., Child, R., Luan, D., Amodei, D., and
Sutskever, I. Language models are unsupervised multitask
learners, 2019.

Touvron, H., Lavril, T., Izacard, G., Martinet, X., Lachaux,
M.-A., Lacroix, T., Rozière, B., Goyal, N., Hambro, E.,
Azhar, F., et al. Llama: Open and efficient foundation lan-
guage models. arXiv preprint arXiv:2302.13971, 2023.

Wang, A., Singh, A., Michael, J., Hill, F., Levy, O., and
Bowman, S. R. Glue: A multi-task benchmark and anal-
ysis platform for natural language understanding. arXiv
preprint arXiv:1804.07461, 2018.

Zaken, E. B., Ravfogel, S., and Goldberg, Y. Bitfit: Sim-
ple parameter-efficient fine-tuning for transformer-based
masked language-models. CoRR, abs/2106.10199, 2021.
URL https://arxiv.org/abs/2106.10199.

Zhang, Q., Chen, M., Bukharin, A., He, P., Cheng, Y.,
Chen, W., and Zhao, T. Adaptive budget allocation for
parameter-efficient fine-tuning. In The Eleventh Interna-
tional Conference on Learning Representations, 2023.

Zhao, J., Zhang, Z., Chen, B., Wang, Z., Anandkumar, A.,
and Tian, Y. Galore: Memory-efficient llm training by
gradient low-rank projection, 2024.

Zhou, H., Lu, X., Xu, W., Zhu, C., and Zhao, T. Lora-
drop: Efficient lora parameter pruning based on output
evaluation. arXiv preprint arXiv:2402.07721, 2024.

8

https://openreview.net/forum?id=XPZIaotutsD
https://openreview.net/forum?id=XPZIaotutsD
https://arxiv.org/abs/2106.10199

