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Low-Rank Adaptation (LoRA) [1] is a fine-tuning method which drastically reduces the number of trainable parameters, bringing efficient training and easy application 
of large pre-trained models. Since its inception, a plethora of enhancements have been proposed in order to bring down even further the costs of fine-tuning while 
preserving as much of the original performance as possible. But what if training dynamics are the key?

Empirical studies have suggested that certain modules 
may influence model performance more strongly than 
others. Targeting these specific modules can directly 
impact prediction quality. 

We propose module importance scores based on:

● the magnitude of forward activations [2]
● the magnitude of accumulated gradient

Module Importance

Limitations

DynaLoRA effectively reduces the number of trainable parameters at a given 
point in LoRA fine-tuning, leading to significantly reduced memory savings.

We explore two different importance measures, a number of allocation 
strategies and schedules. Overall, we observe that even with only 50% of 
active modules at any timestep, our models stay within a competitive margin 
compared to LoRA.

Most surprisingly, we also find that even random sampling performs well, 
suggesting that a smarter allocation strategy may well out-perform the 
baselines.

Discussion

SOURCE CODE

● Top-K. Select only the top-k modules with the  highest 
importance scores.

● Threshold (Top-P). Select the top modules with cumulative sum 
greater than some threshold T.

● Multinomial Sampling. Use module importance scores as 
sampling weights.

● Discounted Sampling. More frequently chosen modules are 
discounted to encourage exploration-exploitation during training.

● Uniform Sampling.

Allocation Strategies

Dynamic allocation can effectively reduce the number of 
trainable parameters by 50% without major impact on 
performance, up to 21% memory savings. 

Cost Savings

● Scope of experiments
● Considered benchmarks

● Re-allocate only once after a specified N steps
● Re-allocate periodically, every N steps

We find that periodic schedules at low intervals yield highest 
performance but take longer to train.

Allocation Schedules

● Extend to larger and more diverse 
architectures such as ViT’s.

● Explore compatibility with 
rank-pruning methods.
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