
References
[1] Hu, Edward J., et al. "Lora: Low-rank adaptation of large
language models." arXiv preprint arXiv:2106.09685 (2021).
[2] Zhou, Hongyun, et al. "LoRA-drop: Efficient LoRA Parameter
Pruning based on Output Evaluation." arXiv preprint
arXiv:2402.07721 (2024).

Future work

Miklos Hamar, Zsombor Fulop, Matey Krastev, Jesse Brouwers
Dynamic Low-Rank Module Allocation Supervisor:

Danilo de Goede

Low-Rank Adaptation (LoRA) [1] is a fine-tuning method which drastically reduces the number of trainable parameters, bringing efficient training and easy application
of large pre-trained models. Since its inception, a plethora of enhancements have been proposed in order to bring down even further the costs of fine-tuning while
preserving as much of the original performance as possible. But what if training dynamics are the key?

Empirical studies have suggested that certain modules
may influence model performance more strongly than
others. Targeting these specific modules can directly
impact prediction quality.

We propose module importance scores based on:

● the magnitude of forward activations [2]
● the magnitude of accumulated gradient

Module Importance

Limitations

DynaLoRA effectively reduces the number of trainable parameters at a given
point in LoRA fine-tuning, leading to significantly reduced memory savings.

We explore two different importance measures, a number of allocation
strategies and schedules. Overall, we observe that even with only 50% of
active modules at any timestep, our models stay within a competitive margin
compared to LoRA.

Most surprisingly, we also find that even random sampling performs well,
suggesting that a smarter allocation strategy may well out-perform the
baselines.

Discussion

SOURCE CODE

● Top-K. Select only the top-k modules with the highest
importance scores.

● Threshold (Top-P). Select the top modules with cumulative sum
greater than some threshold T.

● Multinomial Sampling. Use module importance scores as
sampling weights.

● Discounted Sampling. More frequently chosen modules are
discounted to encourage exploration-exploitation during training.

● Uniform Sampling.

Allocation Strategies

Dynamic allocation can effectively reduce the number of
trainable parameters by 50% without major impact on
performance, up to 21% memory savings.

Cost Savings

● Scope of experiments
● Considered benchmarks

● Re-allocate only once after a specified N steps
● Re-allocate periodically, every N steps

We find that periodic schedules at low intervals yield highest
performance but take longer to train.

Allocation Schedules

● Extend to larger and more diverse
architectures such as ViT’s.

● Explore compatibility with
rank-pruning methods.

2023/2024
Foundation Models

