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Low-Rank Adaptation (LoRA) [1] is a fine-tuning method which drastically reduces the number of trainable parameters, bringing efficient training and easy application
of large pre-trained models. Since its inception, a plethora of enhancements have been proposed in order to bring down even further the costs of fine-tuning while
preserving as much of the original performance as possible. But what if training dynamics are the key?

Module Importance Allocation Strategies

Empirical studies have suggested that certain modules o Top-K. Select only the top-k modules with the highest
may influence model performance more strongly than importance scores.

others. Targeting these specific modules can directly e Threshold (Top-P). Select the top modules with cumulative sum
impact prediction quality. greater than some threshold T.

e Multinomial Sampling. Use module importance scores as

h e of f d activati X sampling weights.
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We propose module importance scores based on:
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Allocation Schedules e
e Re-allocate on|y once after a Speciﬁed N steps Results on GLUE Benchmark Tasks (QV:16) [RoBERTa-base]
e Re-allocate periodically, every N steps
We find that periodic schedules at low intervals yield highest
performance but take longer to train.
Comparison of random;16 allocator, DynaLoRA with scaled _multinimial;16, and DinaLoRA with scaled_multinomial;16 e
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Dynamic allocation can effectively reduce the number of o 0.5 -0.56
trainable parameters by 50% without major impact on -

performance, up to 21% memory savings.
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