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Background Proposed Architecture
Spatial encoder
SegVol [1] is a cutting-edge 3D segmentation e We extend the base SegVol architecture by
model, excelling in  medical image introducing a prior fusion I_ayer -a Self__ and Semantic encoder Mask decoder s @ Mask upscaling
benchmarks. It enables universal and cross-attention block that introduces biases

interactive segmentation by integrating a ViT that provide a more robust mask decoding 5 N N
backbone with text, bounding box, and point strategy. , , - Image encoder Prior fusion * - s BrEckian
' ' e We combine them with learnable positional

prompts. Its success is partly due to
extensive pre-training on 96,000 unlabelled

embeddings in order to encode prior source

(task, modality, image, spatial prompts). & - trainable X -image embedding

CT volumes and fine-tuning on 6,000 labelled
CT volumes.

Finally, we apply an MLP that computes
“posterior” for the generated tokens.
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The Fusion embedding and finetuning
shows clear improvement over the SegVol
baseline

Introduction of Context Priors enhances
performance even further

Good performance on MRI data

The high-dimensional space of the prior
fusion  self-attention block shows
high-correlation between similar features.

Mixture-of-Adapters (MoA) [2] utilizes multiple
lightweight adapter modules within a model to
handle diverse tasks and modalities. We
apply a top-1 gated mixture combining an
identity adapter (CT) with LORA adapter
(MRI) to guarantee:

e Preserved base performance
e Almost no additional runtime costs

Model performance on the 400 dataset. (Modality: CT) Model performance on the 400 dataset. (Modality: MRI)
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